Electronic Transitions in Perovskite: Possible Nonconvecting Layers in the Lower Mantle

+ See all authors and affiliations

Science  16 Jul 2004:
Vol. 305, Issue 5682, pp. 383-386
DOI: 10.1126/science.1098840

You are currently viewing the abstract.

View Full Text


We measured the spin state of iron in magnesium silicate perovskite (Mg0.9,Fe0.1)SiO3 at high pressure and found two electronic transitions occurring at 70 gigapascals and at 120 gigapascals, corresponding to partial and full electron pairing in iron, respectively. The proportion of iron in the low spin state thus grows with depth, increasing the transparency of the mantle in the infrared region, with a maximum at pressures consistent with the D″ layer above the core-mantle boundary. The resulting increase in radiative thermal conductivity suggests the existence of nonconvecting layers in the lowermost mantle.

View Full Text