Structural Basis of Mitochondrial Tethering by Mitofusin Complexes

+ See all authors and affiliations

Science  06 Aug 2004:
Vol. 305, Issue 5685, pp. 858-862
DOI: 10.1126/science.1099793

You are currently viewing the abstract.

View Full Text


Vesicle fusion involves vesicle tethering, docking, and membrane merger. We show that mitofusin, an integral mitochondrial membrane protein, is required on adjacent mitochondria to mediate fusion, which indicates that mitofusin complexes act in trans (that is, between adjacent mitochondria). A heptad repeat region (HR2) mediates mitofusin oligomerization by assembling a dimeric, antiparallel coiled coil. The transmembrane segments are located at opposite ends of the 95 angstrom coiled coil and provide a mechanism for organelle tethering. Consistent with this proposal, truncated mitofusin, in an HR2-dependent manner, causes mitochondria to become apposed with a uniform gap. Our results suggest that HR2 functions as a mitochondrial tether before fusion.

View Full Text