You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
A strong temperature dependence of oxygen K-edge x-ray absorption fine structure features was observed for supercooled and normal liquid water droplets prepared from the breakup of a liquid microjet. Analysis of the data over the temperature range 251 to 288 kelvin (–22° to +15°C) yields a value of 1.5 ± 0.5 kilocalories per mole for the average thermal energy required to effect an observable rearrangement between the fully coordinated (“ice-like”) and distorted (“broken-donor”) local hydrogen-bonding configurations responsible for the pre-edge and post-edge features, respectively. This energy equals the latent heat of melting of ice with hexagonal symmetry (ice Ih) and is consistent with the distribution of hydrogen bond strengths obtained for the “overstructured” ST2 model of water.