Self-Propagating, Molecular-Level Polymorphism in Alzheimer's ß-Amyloid Fibrils

See allHide authors and affiliations

Science  14 Jan 2005:
Vol. 307, Issue 5707, pp. 262-265
DOI: 10.1126/science.1105850

You are currently viewing the abstract.

View Full Text


Amyloid fibrils commonly exhibit multiple distinct morphologies in electron microscope and atomic force microscope images, often within a single image field. By using electron microscopy and solid-state nuclear magnetic resonance measurements on fibrils formed by the 40-residue β-amyloid peptide of Alzheimer's disease (Aβ1–40), we show that different fibril morphologies have different underlying molecular structures, that the predominant structure can be controlled by subtle variations in fibril growth conditions, and that both morphology and molecular structure are self-propagating when fibrils grow from preformed seeds. Different Aβ1–40 fibril morphologies also have significantly different toxicities in neuronal cell cultures. These results have implications for the mechanism of amyloid formation, the phenomenon of strains in prion diseases, the role of amyloid fibrils in amyloid diseases, and the development of amyloid-based nano-materials.

View Full Text