Report

Kinetic Evidence for Five-Coordination in AlOH(aq)2+ Ion

Science  03 Jun 2005:
Vol. 308, Issue 5727, pp. 1450-1453
DOI: 10.1126/science.1110231

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Abstract

Trivalent aluminum ions are important in natural bodies of water, but the structure of their coordination shell is a complex unsolved problem. In strong acid (pH < 3.0), AlIII exists almost entirely as the octahedral Al(H2O)63+ ion, whereas in basic conditions (pH > 7), a tetrahedral Al(OH)4 structure prevails. In the biochemically and geochemically critical pH range of 4.3 to 7.0, the ion structures are less clear. Other hydrolytic species, such as AlOH(aq)2+, exist and are traditionally assumed to be hexacoordinate. We show, however, that the kinetics of proton and water exchange on aqueous AlIII, coupled with Car-Parrinello simulations, support a five-coordinate Al(H2O)4OH2+ ion as the predominant form of AlOH(aq)2+ under ambient conditions. This result contrasts AlIII with other trivalent metal aqua ions, for which there is no evidence for stable pentacoordinate hydrolysis products.

View Full Text

Related Content