Research Article

Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel

Science  05 Aug 2005:
Vol. 309, Issue 5736, pp. 897-903
DOI: 10.1126/science.1116269

You are currently viewing the abstract.

View Full Text

Abstract

Voltage-dependent potassium ion (K+) channels (Kv channels) conduct K+ ions across the cell membrane in response to changes in the membrane voltage, thereby regulating neuronal excitability by modulating the shape and frequency of action potentials. Here we report the crystal structure, at a resolution of 2.9 angstroms, of a mammalian Kv channel, Kv1.2, which is a member of the Shaker K+ channel family. This structure is in complex with an oxido-reductase β subunit of the kind that can regulate mammalian Kv channels in their native cell environment. The activation gate of the pore is open. Large side portals communicate between the pore and the cytoplasm. Electrostatic properties of the side portals and positions of the T1 domain and β subunit are consistent with electrophysiological studies of inactivation gating and with the possibility of K+ channel regulation by the β subunit.

View Full Text

Cited By...