Colloidal Jamming at Interfaces: A Route to Fluid-Bicontinuous Gels

See allHide authors and affiliations

Science  30 Sep 2005:
Vol. 309, Issue 5744, pp. 2198-2201
DOI: 10.1126/science.1116589

You are currently viewing the abstract.

View Full Text


Colloidal particles or nanoparticles, with equal affinity for two fluids, are known to adsorb irreversibly to the fluid-fluid interface. We present large-scale computer simulations of the demixing of a binary solvent containing such particles. The newly formed interface sequesters the colloidal particles; as the interface coarsens, the particles are forced into close contact by interfacial tension. Coarsening is markedly curtailed, and the jammed colloidal layer seemingly enters a glassy state, creating a multiply connected, solidlike film in three dimensions. The resulting gel contains percolating domains of both fluids, with possible uses as, for example, a microreaction medium.

View Full Text