Porous, Crystalline, Covalent Organic Frameworks

See allHide authors and affiliations

Science  18 Nov 2005:
Vol. 310, Issue 5751, pp. 1166-1170
DOI: 10.1126/science.1120411

You are currently viewing the abstract.

View Full Text


Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6·(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P63/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500° to 600°C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).

View Full Text