You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The cellular mechanisms underlying organ formation are largely unknown. We visualized early vertebrate eye morphogenesis at single-cell resolution by in vivo imaging in medaka (Oryzias latipes). Before optic vesicle evagination, retinal progenitor cells (RPCs) modulate their convergence in a fate-specific manner. Presumptive forebrain cells converge toward the midline, whereas medial RPCs remain stationary, predetermining the site of evagination. Subsequent optic vesicle evagination is driven by the active migration of individual RPCs. The analysis of mutants demonstrated that the retina-specific transcription factor rx3 determines the convergence and migration behaviors of RPCs. Hence, the migration of individual cells mediates essential steps of organ morphogenesis.