You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Changes in gene regulation likely influenced the profound phenotypic divergence of humans from other mammals, but the extent of adaptive substitution in human regulatory sequences remains unknown. We identified 992 conserved noncoding sequences (CNSs) with a significant excess of human-specific substitutions. These accelerated elements were disproportionately found near genes involved in neuronal cell adhesion. To assess the uniqueness of human noncoding evolution, we examined CNSs accelerated in chimpanzee and mouse. Although we observed a similar enrichment near neuronal adhesion genes in chimpanzee, the accelerated CNSs themselves exhibited almost no overlap with those in human, suggesting independent evolution toward different neuronal phenotypes in each species. CNSs accelerated in mouse showed no bias toward neuronal cell adhesion. Our results indicate that widespread cis-regulatory changes in human evolution may have contributed to uniquely human features of brain development and function.











