You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Droplets of nonvolatile fuels such as soy oil and glucose-water solutions can be flash evaporated by catalytic partial oxidation to produce hydrogen in high yields with a total time in the reactor of less than 50 milliseconds. Pyrolysis, coupled with catalytic oxidation of the fuels and their fragments upon impact with a hot rhodium-cerium catalyst surface, avoids the formation of deactivating carbon layers on the catalyst. The catalytic reactions of these products generate approximately 1 megawatt of heat per square meter, which maintains the catalyst surface above 800°C at high drop impact rates. At these temperatures, heavy fuels can be catalytically transformed directly into hydrogen, carbon monoxide, and other small molecules in very short contact times without the formation of carbon.