Suppression of the MicroRNA Pathway by Bacterial Effector Proteins

See allHide authors and affiliations

Science  15 Aug 2008:
Vol. 321, Issue 5891, pp. 964-967
DOI: 10.1126/science.1159505

You are currently viewing the abstract.

View Full Text


Plants and animals sense pathogen-associated molecular patterns (PAMPs) and in turn differentially regulate a subset of microRNAs (miRNAs). However, the extent to which the miRNA pathway contributes to innate immunity remains unknown. Here, we show that miRNA-deficient mutants of Arabidopsis partly restore growth of a type III secretion-defective mutant of Pseudomonas syringae. These mutants also sustained growth of nonpathogenic Pseudomonas fluorescens and Escherichia coli strains, implicating miRNAs as key components of plant basal defense. Accordingly, we have identified P. syringae effectors that suppress transcriptional activation of some PAMP-responsive miRNAs or miRNA biogenesis, stability, or activity. These results provide evidence that, like viruses, bacteria have evolved to suppress RNA silencing to cause disease.

View Full Text