A Neural Mechanism for Microsaccade Generation in the Primate Superior Colliculus

See allHide authors and affiliations

Science  13 Feb 2009:
Vol. 323, Issue 5916, pp. 940-943
DOI: 10.1126/science.1166112

You are currently viewing the abstract.

View Full Text


During fixation, the eyes are not still but often exhibit microsaccadic movements. The function of microsaccades is controversial, largely because the neural mechanisms responsible for their generation are unknown. Here, we show that the superior colliculus (SC), a retinotopically organized structure involved in voluntary-saccade target selection, plays a causal role in microsaccade generation. Neurons in the foveal portion of the SC increase their activity before and during microsaccades with sizes of only a few minutes of arc and exhibit selectivity for the direction and amplitude of these movements. Reversible inactivation of these neurons significantly reduces microsaccade rate without otherwise compromising fixation. These results, coupled with computational modeling of SC activity, demonstrate that microsaccades are controlled by the SC and explain the link between microsaccades and visual attention.

View Full Text