Report

Benzothiazinones Kill Mycobacterium tuberculosis by Blocking Arabinan Synthesis

Science  08 May 2009:
Vol. 324, Issue 5928, pp. 801-804
DOI: 10.1126/science.1171583

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Ammunition for the TB Wars

Tuberculosis is a major human disease of global importance resulting from infection with the air-borne pathogen Mycobacterium tuberculosis, which is becoming increasingly resistant to all available drugs. An antituberculosis benzothiazinone compound kills mycobacterium in infected cells and in mice. Makarov et al. (p. 801) have identified a sulfur atom and nitro residues important for benzothiazinone's activity and used genetic methods and biochemical analysis to identify its target in blocking arabinogalactan biosynthesis during cell-wall synthesis. The compound affects the same pathway as ethambutol, and thus a benzothiazinone drug has the potential to become an important part of treatment of drug-resistant disease and, possibly, replace the less effective ethambutol in the primary treatment of tuberculosis.

Abstract

New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-β-d-ribose 2′-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.

  • * These authors contributed equally to this work.

View Full Text

Related Content