Report

MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice

+ See all authors and affiliations

Science  26 Jun 2009:
Vol. 324, Issue 5935, pp. 1710-1713
DOI: 10.1126/science.1174381

You are currently viewing the abstract.

View Full Text

Of Life, Limb, and a Small RNA

Gene expression in mammals is controlled not only by proteins but by small noncoding RNAs called microRNAs. The involvement of these RNAs provides powerful clues about the molecular origins of human diseases and how they might be treated. Ischemic diseases arise from an inadequate blood supply. Bonauer et al. (p. 1710, published online 21 May) find that a specific microRNA that is expressed in the cells lining blood vessels (called miR-92a) functions to repress the growth of new blood vessels. MiR-92a probably acts through effects on expression of integrins, proteins involved in cell adhesion and migration. In mouse models in which an inadequate blood supply had caused damage either to heart or limb muscle, therapeutic inhibition of miR-92a led to an increase in blood vessel density in the damaged tissues and enhanced functional recovery.

Abstract

MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression by binding to target messenger RNAs (mRNAs), leading to translational repression or degradation. Here, we show that the miR-17~92 cluster is highly expressed in human endothelial cells and that miR-92a, a component of this cluster, controls the growth of new blood vessels (angiogenesis). Forced overexpression of miR-92a in endothelial cells blocked angiogenesis in vitro and in vivo. In mouse models of limb ischemia and myocardial infarction, systemic administration of an antagomir designed to inhibit miR-92a led to enhanced blood vessel growth and functional recovery of damaged tissue. MiR-92a appears to target mRNAs corresponding to several proangiogenic proteins, including the integrin subunit alpha5. Thus, miR-92a may serve as a valuable therapeutic target in the setting of ischemic disease.

View Full Text