A Dimeric Structure for Archaeal Box C/D Small Ribonucleoproteins

+ See all authors and affiliations

Science  11 Sep 2009:
Vol. 325, Issue 5946, pp. 1384-1387
DOI: 10.1126/science.1176099

You are currently viewing the abstract.

View Full Text


Methylation of ribosomal RNA (rRNA) is required for optimal protein synthesis. Multiple 2′-O-ribose methylations are carried out by box C/D guide ribonucleoproteins [small ribonucleoproteins (sRNPs) and small nucleolar ribonucleoproteins (snoRNPs)], which are conserved from archaea to eukaryotes. Methylation is dictated by base pairing between the specific guide RNA component of the sRNP or snoRNP and the target rRNA. We determined the structure of a reconstituted and catalytically active box C/D sRNP from the archaeon Methanocaldococcus jannaschii by single-particle electron microscopy. We found that archaeal box C/D sRNPs unexpectedly formed a dimeric structure with an alternative organization of their RNA and protein components that challenges the conventional view of their architecture. Mutational analysis demonstrated that this di-sRNP structure was relevant for the enzymatic function of archaeal box C/D sRNPs.

View Full Text