Dissecting the Genetic Basis of Resistance to Malaria Parasites in Anopheles gambiae

Science  02 Oct 2009:
Vol. 326, Issue 5949, pp. 147-150
DOI: 10.1126/science.1175241

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.


The ability of Anopheles gambiae mosquitoes to transmit Plasmodium parasites is highly variable between individuals. However, the genetic basis of this variability has remained unknown. We combined genome-wide mapping and reciprocal allele-specific RNA interference (rasRNAi) to identify the genomic locus that confers resistance to malaria parasites and demonstrated that polymorphisms in a single gene encoding the antiparasitic thioester-containing protein 1 (TEP1) explain a substantial part of the variability in parasite killing. The link between TEP1 alleles and resistance to malaria may offer new tools for controlling malaria transmission. The successful application of rasRNAi in Anopheles suggests that it could also be applied to other organisms where RNAi is feasible to dissect complex phenotypes to the level of individual quantitative trait alleles.

  • * These authors contributed equally to this work.

  • Present address: Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.

  • Present address: Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1870 Frederiksberg C, Denmark.

View Full Text