Report

Sequential Processing of Lexical, Grammatical, and Phonological Information Within Broca’s Area

Science  16 Oct 2009:
Vol. 326, Issue 5951, pp. 445-449
DOI: 10.1126/science.1174481

You are currently viewing the abstract.

View Full Text

Seeing the Brain's One, Two, Three

Taking advantage of the rare opportunity to record neuronal activity in the human brain using intracranial electrodes, Sahin et al. (p. 445; see the Perspective by Hagoort and Levelt) document the spatial and temporal pattern of neuronal populations within Broca's area as patients thought of a single word, changed its tense (for verbs) or number (for nouns), and articulated the word silently. For these three stages, they detected activity at 200, 320, and 450 milliseconds, moving in a caudal to rostral direction. These data fit neatly within the roughly 600 milliseconds required for the onset of speech and map the distinct neural computations within an area of the brain, known for almost a century and a half, as important for the production of language.

Abstract

Words, grammar, and phonology are linguistically distinct, yet their neural substrates are difficult to distinguish in macroscopic brain regions. We investigated whether they can be separated in time and space at the circuit level using intracranial electrophysiology (ICE), namely by recording local field potentials from populations of neurons using electrodes implanted in language-related brain regions while people read words verbatim or grammatically inflected them (present/past or singular/plural). Neighboring probes within Broca’s area revealed distinct neuronal activity for lexical (~200 milliseconds), grammatical (~320 milliseconds), and phonological (~450 milliseconds) processing, identically for nouns and verbs, in a region activated in the same patients and task in functional magnetic resonance imaging. This suggests that a linguistic processing sequence predicted on computational grounds is implemented in the brain in fine-grained spatiotemporally patterned activity.

View Full Text