Report

Drive Against Hotspot Motifs in Primates Implicates the PRDM9 Gene in Meiotic Recombination

Science  12 Feb 2010:
Vol. 327, Issue 5967, pp. 876-879
DOI: 10.1126/science.1182363

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Homing in on Hotspots

The clustering of recombination in the genome, around locations known as hotspots, is associated with specific DNA motifs. Now, using a variety of techniques, three studies implicate a chromatin-modifying protein, the histone-methyltransferase PRDM9, as a major factor involved in human hotspots (see the Perspective by Cheung et al.). Parvanov et al. (p. 835, published online 31 December) mapped the locus in mice, and analyzed allelic variation in mice and humans, whereas Myers et al. (p. 876, published online 31 December) used a comparative analysis between human and chimpanzees to show that the recombination process leads to a self-destructive drive in which the very motifs that recruit hotspots are eliminated from our genome. Baudat et al. (p. 836, published online 31 December) took this analysis a step further to identify human allelic variants within Prdm9 that differed in the frequency at which they used hotspots. Furthermore, differential binding of this protein to different human alleles suggests that this protein interacts with specific DNA sequences. Thus, PDRM9 functions in the determination of recombination loci within the genome and may be a significant factor in the genomic differences between closely related species.

Abstract

Although present in both humans and chimpanzees, recombination hotspots, at which meiotic crossover events cluster, differ markedly in their genomic location between the species. We report that a 13–base pair sequence motif previously associated with the activity of 40% of human hotspots does not function in chimpanzees and is being removed by self-destructive drive in the human lineage. Multiple lines of evidence suggest that the rapidly evolving zinc-finger protein PRDM9 binds to this motif and that sequence changes in the protein may be responsible for hotspot differences between species. The involvement of PRDM9, which causes histone H3 lysine 4 trimethylation, implies that there is a common mechanism for recombination hotspots in eukaryotes but raises questions about what forces have driven such rapid change.

  • * These authors contributed equally to this work.

  • Present address: Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, UK.

  • § These authors contributed equally to this work.

View Full Text

Cited By...