Report

The Lmo2 Oncogene Initiates Leukemia in Mice by Inducing Thymocyte Self-Renewal

See allHide authors and affiliations

Science  12 Feb 2010:
Vol. 327, Issue 5967, pp. 879-883
DOI: 10.1126/science.1182378

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

It's All About Self-Renewal

The Lmo2 oncogene was identified as a contributing factor in human T cell acute lymphoblastic leukemia (T-ALL) nearly two decades ago, but the gene rose to prominence in 2003 when its inadvertent activation by a retroviral vector was shown to cause leukemia in two patients in a gene therapy trial. The cellular mechanism by which the gene product of Lmo2, a transcriptional regulator, induces T-ALL is poorly understood. Studying transgenic mice, McCormack et al. (p. 879, published online 21 January) now show that Lmo2 confers self-renewal activity to committed T cells in the thymus without affecting their capacity for T cell differentiation. These self-renewing cells, which were detectable 8 months prior to the onset of overt leukemia in the mice, expressed genes in common with hematopoietic stem cells (HSCs), suggesting that Lmo2 might reactivate an HSC-specific transcriptional program.

Abstract

The LMO2 oncogene causes a subset of human T cell acute lymphoblastic leukemias (T-ALL), including four cases that arose as adverse events in gene therapy trials. To investigate the cellular origin of LMO2-induced leukemia, we used cell fate mapping to study mice in which the Lmo2 gene was constitutively expressed in the thymus. Lmo2 induced self-renewal of committed T cells in the mice more than 8 months before the development of overt T-ALL. These self-renewing cells retained the capacity for T cell differentiation but expressed several genes typical of hematopoietic stem cells (HSCs), suggesting that Lmo2 might reactivate an HSC-specific transcriptional program. Forced expression of one such gene, Hhex, was sufficient to initiate self-renewal of thymocytes in vivo. Thus, Lmo2 promotes the self-renewal of preleukemic thymocytes, providing a mechanism by which committed T cells can then accumulate additional genetic mutations required for leukemic transformation.

View Full Text