You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The reduced form of graphene oxide (GO) is an attractive alternative to graphene for producing large-scale flexible conductors and for creating devices that require an electronic gap. We report on a means to tune the topographical and electrical properties of reduced GO (rGO) with nanoscopic resolution by local thermal reduction of GO with a heated atomic force microscope tip. The rGO regions are up to four orders of magnitude more conductive than pristine GO. No sign of tip wear or sample tearing was observed. Variably conductive nanoribbons with dimensions down to 12 nanometers could be produced in oxidized epitaxial graphene films in a single step that is clean, rapid, and reliable.