Linear Arrays of Nuclear Envelope Proteins Harness Retrograde Actin Flow for Nuclear Movement

See allHide authors and affiliations

Science  20 Aug 2010:
Vol. 329, Issue 5994, pp. 956-959
DOI: 10.1126/science.1189072

You are currently viewing the abstract.

View Full Text


Nuclei move to specific locations to polarize migrating and differentiating cells. Many nuclear movements are microtubule-dependent. However, nuclear movement to reorient the centrosome in migrating fibroblasts occurs through an unknown actin-dependent mechanism. We found that linear arrays of outer (nesprin2G) and inner (SUN2) nuclear membrane proteins assembled on and moved with retrogradely moving dorsal actin cables during nuclear movement in polarizing fibroblasts. Inhibition of nesprin2G, SUN2, or actin prevented nuclear movement and centrosome reorientation. The coupling of actin cables to the nuclear membrane for nuclear movement via specific membrane proteins indicates that, like plasma membrane integrins, nuclear membrane proteins assemble into actin-dependent arrays for force transduction.

View Full Text