Report

Human SIRT6 Promotes DNA End Resection Through CtIP Deacetylation

See allHide authors and affiliations

Science  10 Sep 2010:
Vol. 329, Issue 5997, pp. 1348-1353
DOI: 10.1126/science.1192049

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

UnSIRT6ain Repair

Efficient and accurate repair of double-strand DNA breaks is critical for genome stability and involves a process known as homologous recombination. During repair of the sheared ends, the DNA must be resected by trimming one of the two strands on either side of the break. For the repair to be accurate, the remaining single-stranded DNA (ssDNA) has to be bound by the ssDNA-binding protein, RPA, after which the ssDNA can then bind homologous sequences. Kaidi et al. (p. 1348) found that the mammalian deacetylase, SIRT6 (which has been implicated in maintaining genome stability), was critical for resection. At sites of DNA damage, SIRT6 deacetylated and activated CtIP (a protein important for resection), ensuring that resection occurred at the appropriate place and time.

Abstract

SIRT6 belongs to the sirtuin family of protein lysine deacetylases, which regulate aging and genome stability. We found that human SIRT6 has a role in promoting DNA end resection, a crucial step in DNA double-strand break (DSB) repair by homologous recombination. SIRT6 depletion impaired the accumulation of replication protein A and single-stranded DNA at DNA damage sites, reduced rates of homologous recombination, and sensitized cells to DSB-inducing agents. We identified the DSB resection protein CtIP [C-terminal binding protein (CtBP) interacting protein] as a SIRT6 interaction partner and showed that SIRT6-dependent CtIP deacetylation promotes resection. A nonacetylatable CtIP mutant alleviated the effect of SIRT6 depletion on resection, thus identifying CtIP as a key substrate by which SIRT6 facilitates DSB processing and homologous recombination. These findings further clarify how SIRT6 promotes genome stability.

View Full Text