Report

Carbon Nanotubes with Temperature-Invariant Viscoelasticity from –196° to 1000°C

Science  03 Dec 2010:
Vol. 330, Issue 6009, pp. 1364-1368
DOI: 10.1126/science.1194865

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Abstract

Viscoelasticity describes the ability of a material to possess both elasticity and viscosity. Viscoelastic materials, such as rubbers, possess a limited operational temperature range (for example, for silicone rubber it is –55° to 300°C), above which the material breaks down and below which the material undergoes a glass transition and hardens. We created a viscoelastic material composed from a random network of long interconnected carbon nanotubes that exhibited an operational temperature range from –196° to 1000°C. The storage and loss moduli, frequency stability, reversible deformation level, and fatigue resistance were invariant from –140° to 600°C. We interpret that the thermal stability stems from energy dissipation through the zipping and unzipping of carbon nanotubes at contacts.

View Full Text