Report

Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate

Science  03 Dec 2010:
Vol. 330, Issue 6009, pp. 1381-1385
DOI: 10.1126/science.1194167

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Ocean Dweller Sequenced

The Tunicates, which include the solitary free-swimming larvaceans that are a major pelagic component of our oceans, are a basal lineage of the chordates. In order to investigate the major evolutionary transition represented by these organisms, Denoeud et al. (p. 1381, published online 18 November) sequenced the genome of Oikopleura dioica, a chordate placed by phylogeny between vertebrates and amphioxus. Surprisingly, the genome showed little conservation in genome architecture when compared to the genomes of other animals. Furthermore, this highly compacted genome contained intron gains and losses, as well as species-specific gene duplications and losses that may be associated with development. Thus, contrary to popular belief, global similarities of genome architecture from sponges to humans are not essential for the preservation of ancestral morphologies.

Abstract

Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.

View Full Text

Cited By...