Report

A Bicycle Can Be Self-Stable Without Gyroscopic or Caster Effects

Science  15 Apr 2011:
Vol. 332, Issue 6027, pp. 339-342
DOI: 10.1126/science.1201959

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Abstract

A riderless bicycle can automatically steer itself so as to recover from falls. The common view is that this self-steering is caused by gyroscopic precession of the front wheel, or by the wheel contact trailing like a caster behind the steer axis. We show that neither effect is necessary for self-stability. Using linearized stability calculations as a guide, we built a bicycle with extra counter-rotating wheels (canceling the wheel spin angular momentum) and with its front-wheel ground-contact forward of the steer axis (making the trailing distance negative). When laterally disturbed from rolling straight, this bicycle automatically recovers to upright travel. Our results show that various design variables, like the front mass location and the steer axis tilt, contribute to stability in complex interacting ways.

View Full Text