Report

Selective, Nickel-Catalyzed Hydrogenolysis of Aryl Ethers

Science  22 Apr 2011:
Vol. 332, Issue 6028, pp. 439-443
DOI: 10.1126/science.1200437

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


This article has a correction. Please see:

Abstract

Selective hydrogenolysis of the aromatic carbon-oxygen (C-O) bonds in aryl ethers is an unsolved synthetic problem important for the generation of fuels and chemical feedstocks from biomass and for the liquefaction of coal. Currently, the hydrogenolysis of aromatic C-O bonds requires heterogeneous catalysts that operate at high temperature and pressure and lead to a mixture of products from competing hydrogenolysis of aliphatic C-O bonds and hydrogenation of the arene. Here, we report hydrogenolyses of aromatic C-O bonds in alkyl aryl and diaryl ethers that form exclusively arenes and alcohols. This process is catalyzed by a soluble nickel carbene complex under just 1 bar of hydrogen at temperatures of 80 to 120°C; the relative reactivity of ether substrates scale as Ar-OAr>>Ar-OMe>ArCH2-OMe (Ar, Aryl; Me, Methyl). Hydrogenolysis of lignin model compounds highlights the potential of this approach for the conversion of refractory aryl ether biopolymers to hydrocarbons.

View Full Text