Residue-Specific Vibrational Echoes Yield 3D Structures of a Transmembrane Helix Dimer

See allHide authors and affiliations

Science  03 Jun 2011:
Vol. 332, Issue 6034, pp. 1206-1209
DOI: 10.1126/science.1202997

You are currently viewing the abstract.

View Full Text


Two-dimensional (2D) vibrational echo spectroscopy has previously been applied to structural determination of small peptides. Here we extend the technique to a more complex, biologically important system: the homodimeric transmembrane dimer from the α chain of the integrin αIIbβ3. We prepared micelle suspensions of the pair of 30-residue chains that span the membrane in the native structure, with varying levels of heavy (13C=18O) isotopes substituted in the backbone of the central 10th through 20th positions. The constraints derived from vibrational coupling of the precisely spaced heavy residues led to determination of an optimized structure from a range of model candidates: Glycine residues at the 12th, 15th, and 16th positions form a tertiary contact in parallel right-handed helix dimers with crossing angles of –58° ± 9° and interhelical distances of 7.7 ± 0.5 angstroms. The frequency correlation established the dynamical model used in the analysis, and it indicated the absence of mobile water associated with labeled residues. Delocalization of vibrational excitations between the helices was also quantitatively established.

View Full Text