PerspectivePhysiology

Synthetic Physiology

+ See all authors and affiliations

Science  24 Jun 2011:
Vol. 332, Issue 6037, pp. 1508-1509
DOI: 10.1126/science.1208555

You are currently viewing the summary.

View Full Text

Summary

Optogenetic tools are DNA-encoded molecules that, when genetically targeted to cells, enable the control of specific physiological processes within those cells through exposure to light. These tools can pinpoint how these specific processes affect the emergent properties of a complex biological system, such as a mammalian organ or even an entire animal. They can also allow control of a biological system for therapeutic or bioengineering purposes. Many of the optical control tools explored to date are single-component reagents containing a photoactive signaling domain. An interesting question is raised by comparing optogenetics to synthetic biology. In the latter, interchangeable and modular DNA-encoded parts are assembled into complex biological circuits, thus enabling sophisticated logic and computation as well as the production of biologics and reagents (1, 2). Is it possible to devise strategies for the temporally precise cell-targeted optical control of complex engineered biological computational or chemical-synthetic pathways? Such a marriage of optogenetics and synthetic biology—which one might call synthetic physiology—would open up the ability to use optogenetics to trigger and regulate engineered synthetic biology systems, which in turn could execute computational and biological programs of great complexity (3). On page 1565 of this issue, Ye et al. (4) explore such a hybrid approach to controlling a biological system, as well as the bioengineering and preclinical capabilities opened up by such an approach.

Related Content