You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
The transmission of information from DNA to RNA is a critical process. We compared RNA sequences from human B cells of 27 individuals to the corresponding DNA sequences from the same individuals and uncovered more than 10,000 exonic sites where the RNA sequences do not match that of the DNA. All 12 possible categories of discordances were observed. These differences were nonrandom as many sites were found in multiple individuals and in different cell types, including primary skin cells and brain tissues. Using mass spectrometry, we detected peptides that are translated from the discordant RNA sequences and thus do not correspond exactly to the DNA sequences. These widespread RNA-DNA differences in the human transcriptome provide a yet unexplored aspect of genome variation.











