Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean

See allHide authors and affiliations

Science  02 Sep 2011:
Vol. 333, Issue 6047, pp. 1296-1300
DOI: 10.1126/science.1203690

You are currently viewing the abstract.

View Full Text


Recent studies suggest that unidentified prokaryotes fix inorganic carbon at globally significant rates in the immense dark ocean. Using single-cell sorting and whole-genome amplification of prokaryotes from two subtropical gyres, we obtained genomic DNA from 738 cells representing most cosmopolitan lineages. Multiple cells of Deltaproteobacteria cluster SAR324, Gammaproteobacteria clusters ARCTIC96BD-19 and Agg47, and some Oceanospirillales from the lower mesopelagic contained ribulose-1,5-bisphosphate carboxylase-oxygenase and sulfur oxidation genes. These results corroborated community DNA and RNA profiling from diverse geographic regions. The SAR324 genomes also suggested C1 metabolism and a particle-associated life-style. Microautoradiography and fluorescence in situ hybridization confirmed bicarbonate uptake and particle association of SAR324 cells. Our study suggests potential chemolithoautotrophy in several uncultured Proteobacteria lineages that are ubiquitous in the dark oxygenated ocean and provides new perspective on carbon cycling in the ocean’s largest habitat.

View Full Text