Report

X-ROS Signaling: Rapid Mechano-Chemo Transduction in Heart

Science  09 Sep 2011:
Vol. 333, Issue 6048, pp. 1440-1445
DOI: 10.1126/science.1202768

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Abstract

We report that in heart cells, physiologic stretch rapidly activates reduced-form nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) to produce reactive oxygen species (ROS) in a process dependent on microtubules (X-ROS signaling). ROS production occurs in the sarcolemmal and t-tubule membranes where NOX2 is located and sensitizes nearby ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR). This triggers a burst of Ca2+ sparks, the elementary Ca2+ release events in heart. Although this stretch-dependent “tuning” of RyRs increases Ca2+ signaling sensitivity in healthy cardiomyocytes, in disease it enables Ca2+ sparks to trigger arrhythmogenic Ca2+ waves. In the mouse model of Duchenne muscular dystrophy, hyperactive X-ROS signaling contributes to cardiomyopathy through aberrant Ca2+ release from the SR. X-ROS signaling thus provides a mechanistic explanation for the mechanotransduction of Ca2+ release in the heart and offers fresh therapeutic possibilities.

View Full Text

Related Content