Report

Light-Induced Structural and Functional Plasticity in Drosophila Larval Visual System

See allHide authors and affiliations

Science  09 Sep 2011:
Vol. 333, Issue 6048, pp. 1458-1462
DOI: 10.1126/science.1207121

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Abstract

How to build and maintain a reliable yet flexible circuit is a fundamental question in neurobiology. The nervous system has the capacity for undergoing modifications to adapt to the changing environment while maintaining its stability through compensatory mechanisms, such as synaptic homeostasis. Here, we describe our findings in the Drosophila larval visual system, where the variation of sensory inputs induced substantial structural plasticity in dendritic arbors of the postsynaptic neuron and concomitant changes to its physiological output. Furthermore, our genetic analyses have identified the cyclic adenosine monophosphate (cAMP) pathway and a previously uncharacterized cell surface molecule as critical components in regulating experience-dependent modification of the postsynaptic dendrite morphology in Drosophila.

View Full Text