You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
Alkenes and alcohols are among the most abundant and commonly used organic feedstock in industrial processes. We report a selective catalytic alkylation reaction of alkenes with alcohols that forms a carbon-carbon bond between vinyl carbon-hydrogen (C–H) and carbon-hydroxy centers with the concomitant loss of water. The cationic ruthenium complex [(C6H6)(PCy3)(CO)RuH]+BF4– (Cy, cyclohexyl) catalyzes the alkylation in solution within 2 to 8 hours at temperatures ranging from 75° to 110°C and tolerates a broad range of substrate functionality, including amines and carbonyls. Preliminary mechanistic studies are inconsistent with Friedel-Crafts–type electrophilic activation of the alcohols, suggesting instead a vinyl C–H activation pathway with opposite electronic polarization.