PerspectiveMaterials Science

Generating Helices in Nature

See allHide authors and affiliations

Science  23 Sep 2011:
Vol. 333, Issue 6050, pp. 1715-1716
DOI: 10.1126/science.1210734

You are currently viewing the summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution


Macroscopic helical structures formed by organisms include seashells, horns, plant tendrils, and seed pods (see the figure, panel A). The helices that form are chiral; like wood screws, they have a handedness. Some are helicoids, twisted helices with saddle-like curvature and a straight centerline; others are cylindrical helices with cylindrical curvature and a helical centerline. Studies of the mechanisms underlying the formation of helicoid or helical ribbons and of the transitions between these structures (14) have left an important question unanswered: How do the molecular organization of the material and its global geometrical features interact to create a diversity of helical shapes? On page 1726 of this issue, Armon et al. (5) explore the rich phenomenology associated with slender strips made of mutually opposing “molecular” layers, taking a singular botanical structure—the Bauhinia seed pod—as their inspiration. They show that a single component, namely a flat strip with a saddle-like intrinsic curvature, is sufficient to generate a wide variety of helical shapes.