You are currently viewing the abstract.
View Full TextLog in to view the full text
AAAS login provides access to Science for AAAS members, and access to other journals in the Science family to users who have purchased individual subscriptions.
Register for free to read this article
As a service to the community, this article is available for free. Existing users log in.
More options
Download and print this article for your personal scholarly, research, and educational use.
Buy a single issue of Science for just $15 USD.
Abstract
It is generally accepted that cyanobacteria have an incomplete tricarboxylic acid (TCA) cycle because they lack 2-oxoglutarate dehydrogenase and thus cannot convert 2-oxoglutarate to succinyl–coenzyme A (CoA). Genes encoding a novel 2-oxoglutarate decarboxylase and succinic semialdehyde dehydrogenase were identified in the cyanobacterium Synechococcus sp. PCC 7002. Together, these two enzymes convert 2-oxoglutarate to succinate and thus functionally replace 2-oxoglutarate dehydrogenase and succinyl-CoA synthetase. These genes are present in all cyanobacterial genomes except those of Prochlorococcus and marine Synechococcus species. Closely related genes occur in the genomes of some methanogens and other anaerobic bacteria, which are also thought to have incomplete TCA cycles.