Report

Molecular Determinants of Scouting Behavior in Honey Bees

See allHide authors and affiliations

Science  09 Mar 2012:
Vol. 335, Issue 6073, pp. 1225-1228
DOI: 10.1126/science.1213962

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Bee Adventurous

Individuals differ in their behavior, sometimes in consistent ways. For example, some people may seek out new experiences, while others prefer to stick with what they know. This is true in bees as well, where some workers take on the dangerous, novelty-seeking task of scouting more often than others. Liang et al. (p. 1225) found that bees that display such scouting behavior not only tend to scout in multiple contexts (both foraging and searching for nests) but also show differences in gene expression in their brains. Experimental manipulation of gene expression predictably changed scouting behavior. The molecular underpinnings of bee scouting behavior appear to be similar to those associated with novelty-seeking in vertebrate species, including humans.

Abstract

Little is known about the molecular basis of differences in behavior among individuals. Here we report consistent novelty-seeking behavior, across different contexts, among honey bees in their tendency to scout for food sources and nest sites, and we reveal some of the molecular underpinnings of this behavior relative to foragers that do not scout. Food scouts showed extensive differences in brain gene expression relative to other foragers, including differences related to catecholamine, glutamate, and γ-aminobutyric acid signaling. Octopamine and glutamate treatments increased the likelihood of scouting, whereas dopamine antagonist treatment decreased it. These findings demonstrate intriguing similarities in human and insect novelty seeking and suggest that this trait, which presumably evolved independently in these two lineages, may be subserved by conserved molecular components.

View Full Text