Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish

Science  13 Apr 2012:
Vol. 336, Issue 6078, pp. 233-237
DOI: 10.1126/science.1215704

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution

Translation Block

MicroRNAs (miRNAs) are small, noncoding RNA genes that are found in the genomes of most eukaryotes, where they play an important role in the regulation of gene expression. Although whether gene activity is repressed by blocking translation of messenger RNA (mRNA) targets, or by promoting their deadenylation and then degradation, has been open to debate. Bazzini et al. (p. 233, published online 15 March) and Djuranovic et al. (p. 237) looked at early points in the repression reaction in the zebrafish embryo or in Drosophila tissue culture cells, respectively, and found that translation was blocked before target mRNAs were significantly deadenylated and degraded. Thus, miRNAs appear to interfere with the initiation step of translation.


MicroRNAs regulate gene expression through deadenylation, repression, and messenger RNA (mRNA) decay. However, the contribution of each mechanism in non-steady-state situations remains unclear. We monitored the impact of miR-430 on ribosome occupancy of endogenous mRNAs in wild-type and dicer mutant zebrafish embryos and found that miR-430 reduces the number of ribosomes on target mRNAs before causing mRNA decay. Translational repression occurs before complete deadenylation, and disrupting deadenylation with use of an internal polyadenylate tail did not block target repression. Lastly, we observed that ribosome density along the length of the message remains constant, suggesting that translational repression occurs by reducing the rate of initiation rather than affecting elongation or causing ribosomal drop-off. These results show that miR-430 regulates translation initiation before inducing mRNA decay during zebrafish development.

View Full Text

Cited By...