Report

Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-Base Resolution

Science  18 May 2012:
Vol. 336, Issue 6083, pp. 934-937
DOI: 10.1126/science.1220671

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Distinguishing Epigenetic Marks

Methylation of the cytosine base in eukaryotic DNA (5mC) is an important epigenetic mark involved in gene silencing and genome stability. Methylated cytosine can be enzymatically oxidized to 5-hydroxymethylcytosine (5hmC), which may function as a distinct epigenetic mark—possibly involved in pluripotency—and it may also be an intermediate in active DNA demethylation. To be able to detect 5hmC genome-wide and at single-base resolution, Booth et al. (p. 934, published online 26 April) developed a 5hmC sequencing chemistry that selectively oxidizes 5hmC to 5-formylcytosine and then to uracil while leaving 5mC unchanged. Using this method, mouse embryonic stem cell genomic DNA was sequenced to reveal that 5hmC is found enriched at intragenic CpG islands and long interspersed nuclear element–1 retrotransposons.

Abstract

5-Methylcytosine can be converted to 5-hydroxymethylcytosine (5hmC) in mammalian DNA by the ten-eleven translocation (TET) enzymes. We introduce oxidative bisulfite sequencing (oxBS-Seq), the first method for quantitative mapping of 5hmC in genomic DNA at single-nucleotide resolution. Selective chemical oxidation of 5hmC to 5-formylcytosine (5fC) enables bisulfite conversion of 5fC to uracil. We demonstrate the utility of oxBS-Seq to map and quantify 5hmC at CpG islands (CGIs) in mouse embryonic stem (ES) cells and identify 800 5hmC-containing CGIs that have on average 3.3% hydroxymethylation. High levels of 5hmC were found in CGIs associated with transcriptional regulators and in long interspersed nuclear elements, suggesting that these regions might undergo epigenetic reprogramming in ES cells. Our results open new questions on 5hmC dynamics and sequence-specific targeting by TETs.

View Full Text

Related Content