FANCM Limits Meiotic Crossovers

See allHide authors and affiliations

Science  22 Jun 2012:
Vol. 336, Issue 6088, pp. 1588-1590
DOI: 10.1126/science.1220381

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

No Crossing Over

To ensure the correct division of chromosome during the reduction division of meiosis, homologous chromosomes undergo double-strand breaks that—through crossing over and recombination—link the homologs together (and importantly introduce diversity into the genomes of gametes). But only a minority of these crossovers results in recombination—most are directed into non-crossover pathways. Lorenz et al. (p. 1585), working in the yeast Schizosaccharomyces pombe, and Crismani et al. (p. 1588), working in the higher plant Arabidopsis thaliana, looked for the factors that limit crossovers and promote non-crossover pathways. The homolog of the human Fanconi anemia complementation group M (FANCM) helicase protein was found to be a major meiotic anti-recombinase, which could drive meiotic recombination intermediates into the non-crossover pathway.


The number of meiotic crossovers (COs) is tightly regulated within a narrow range, despite a large excess of molecular precursors. The factors that limit COs remain largely unknown. Here, using a genetic screen in Arabidopsis thaliana, we identified the highly conserved FANCM helicase, which is required for genome stability in humans and yeasts, as a major factor limiting meiotic CO formation. The fancm mutant has a threefold-increased CO frequency as compared to the wild type. These extra COs arise not from the pathway that accounts for most of the COs in wild type, but from an alternate, normally minor pathway. Thus, FANCM is a key factor imposing an upper limit on the number of meiotic COs, and its manipulation holds much promise for plant breeding.

View Full Text