Report

Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching

Science  29 Jun 2012:
Vol. 336, Issue 6089, pp. 1684-1687
DOI: 10.1126/science.1221111

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Go with the Flow

Effective absorption or filtration can be achieved by having a material with multiple levels of porosity, so that the main flow can occur in the larger channels, while smaller passageways can be used to sequester a secondary material. It can be difficult to make these materials because the pores need to be different sizes, but still fully connected to each other. Zhang et al. (p. 1684) show that a hierarchical zeolite can be made through a simple process using a single structure-directing agent that causes repetitive branching. This leads to a material with improved transport and catalytic properties.

Abstract

Hierarchical zeolites are a class of microporous catalysts and adsorbents that also contain mesopores, which allow for fast transport of bulky molecules and thereby enable improved performance in petrochemical and biomass processing. We used repetitive branching during one-step hydrothermal crystal growth to synthesize a new hierarchical zeolite made of orthogonally connected microporous nanosheets. The nanosheets are 2 nanometers thick and contain a network of 0.5-nanometer micropores. The house-of-cards arrangement of the nanosheets creates a permanent network of 2- to 7-nanometer mesopores, which, along with the high external surface area and reduced micropore diffusion length, account for higher reaction rates for bulky molecules relative to those of other mesoporous and conventional MFI zeolites.

View Full Text

Related Content