Report

Shear-Activated Nanotherapeutics for Drug Targeting to Obstructed Blood Vessels

Science  10 Aug 2012:
Vol. 337, Issue 6095, pp. 738-742
DOI: 10.1126/science.1217815

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

This article has a correction. Please see:

Abstract

Obstruction of critical blood vessels due to thrombosis or embolism is a leading cause of death worldwide. Here, we describe a biomimetic strategy that uses high shear stress caused by vascular narrowing as a targeting mechanism—in the same way platelets do—to deliver drugs to obstructed blood vessels. Microscale aggregates of nanoparticles were fabricated to break up into nanoscale components when exposed to abnormally high fluid shear stress. When coated with tissue plasminogen activator and administered intravenously in mice, these shear-activated nanotherapeutics induce rapid clot dissolution in a mesenteric injury model, restore normal flow dynamics, and increase survival in an otherwise fatal mouse pulmonary embolism model. This biophysical strategy for drug targeting, which lowers required doses and minimizes side effects while maximizing drug efficacy, offers a potential new approach for treatment of life-threatening diseases that result from acute vascular occlusion.

View Full Text