Report

Processing and Subcellular Trafficking of ER-Tethered EIN2 Control Response to Ethylene Gas

Science  19 Oct 2012:
Vol. 338, Issue 6105, pp. 390-393
DOI: 10.1126/science.1225974

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Abstract

Ethylene gas is essential for many developmental processes and stress responses in plants. ETHYLENE INSENSITIVE2 (EIN2), an NRAMP-like integral membrane protein, plays an essential role in ethylene signaling, but its function remains enigmatic. Here we report that phosphorylation-regulated proteolytic processing of EIN2 triggers its endoplasmic reticulum (ER)–to–nucleus translocation. ER-tethered EIN2 shows CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) kinase–dependent phosphorylation. Ethylene triggers dephosphorylation at several sites and proteolytic cleavage at one of these sites, resulting in nuclear translocation of a carboxyl-terminal EIN2 fragment (EIN2-C′). Mutations that mimic EIN2 dephosphorylation, or inactivate CTR1, show constitutive cleavage and nuclear localization of EIN2-C′ and EIN3 and EIN3-LIKE1–dependent activation of ethylene responses. These findings uncover a mechanism of subcellular communication whereby ethylene stimulates phosphorylation-dependent cleavage and nuclear movement of the EIN2-C′ peptide, linking hormone perception and signaling components in the ER with nuclear-localized transcriptional regulators.

View Full Text

Cited By...