Report

Genome-Wide Detection of Single-Nucleotide and Copy-Number Variations of a Single Human Cell

Science  21 Dec 2012:
Vol. 338, Issue 6114, pp. 1622-1626
DOI: 10.1126/science.1229164

You are currently viewing the abstract.

View Full Text

Abstract

Kindred cells can have different genomes because of dynamic changes in DNA. Single-cell sequencing is needed to characterize these genomic differences but has been hindered by whole-genome amplification bias, resulting in low genome coverage. Here, we report on a new amplification method—multiple annealing and looping-based amplification cycles (MALBAC)—that offers high uniformity across the genome. Sequencing MALBAC-amplified DNA achieves 93% genome coverage ≥1x for a single human cell at 25x mean sequencing depth. We detected digitized copy-number variations (CNVs) of a single cancer cell. By sequencing three kindred cells, we were able to identify individual single-nucleotide variations (SNVs), with no false positives detected. We directly measured the genome-wide mutation rate of a cancer cell line and found that purine-pyrimidine exchanges occurred unusually frequently among the newly acquired SNVs.

View Full Text

Cited By...