Report

Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition

See allHide authors and affiliations

Science  01 Feb 2013:
Vol. 339, Issue 6119, pp. 580-584
DOI: 10.1126/science.1228522

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Cells in Transit(ion)

Epithelial-mesenchymal transition (EMT) is a developmental program that converts adherent epithelial cells to a migratory mesenchymal state. This cell-fate change has been linked to tumor metastasis in preclinical models. To investigate whether EMT occurs in human cancer, Yu et al. (p. 580) isolated circulating tumor cells (CTCs) from breast cancer patients and analyzed their expression of epithelial and mesenchymal markers by RNA–in situ hybridization and RNA sequencing. Biphenotypic cells expressing both types of markers were rare in primary breast tumors but were enriched among CTCs, as were cells expressing only mesenchymal markers. Serial blood samples from one patient revealed that CTCs in the mesenchymal state declined in number when the patient responded to therapy but rebounded when the disease began to progress—a pattern repeated when a different therapy was administered. Thus, EMT may facilitate tumor cell dissemination in humans.

Abstract

Epithelial-mesenchymal transition (EMT) of adherent epithelial cells to a migratory mesenchymal state has been implicated in tumor metastasis in preclinical models. To investigate its role in human cancer, we characterized EMT in circulating tumor cells (CTCs) from breast cancer patients. Rare primary tumor cells simultaneously expressed mesenchymal and epithelial markers, but mesenchymal cells were highly enriched in CTCs. Serial CTC monitoring in 11 patients suggested an association of mesenchymal CTCs with disease progression. In an index patient, reversible shifts between these cell fates accompanied each cycle of response to therapy and disease progression. Mesenchymal CTCs occurred as both single cells and multicellular clusters, expressing known EMT regulators, including transforming growth factor (TGF)–β pathway components and the FOXC1 transcription factor. These data support a role for EMT in the blood-borne dissemination of human breast cancer.

View Full Text