Report

Synchronous Change of Atmospheric CO2 and Antarctic Temperature During the Last Deglacial Warming

Science  01 Mar 2013:
Vol. 339, Issue 6123, pp. 1060-1063
DOI: 10.1126/science.1226368

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


No Leader to Follow

Changes in the concentration of atmospheric CO2 and surface air temperature are closely related. However, temperature can influence atmospheric CO2 as well as be influenced by it. Studies of polar ice cores have concluded that temperature increases during periods of rapid warming have preceded increases in CO2 by hundreds of years. Parrenin et al. (p. 1060; see the Perspective by Brook) present a revised age scale for the atmospheric component of Antarctic ice cores, based on the isotopic composition of the N2 that they contain, and suggest that temperature and CO2 changed synchronously over four intervals of rapid warming during the last deglaciation.

Abstract

Understanding the role of atmospheric CO2 during past climate changes requires clear knowledge of how it varies in time relative to temperature. Antarctic ice cores preserve highly resolved records of atmospheric CO2 and Antarctic temperature for the past 800,000 years. Here we propose a revised relative age scale for the concentration of atmospheric CO2 and Antarctic temperature for the last deglacial warming, using data from five Antarctic ice cores. We infer the phasing between CO2 concentration and Antarctic temperature at four times when their trends change abruptly. We find no significant asynchrony between them, indicating that Antarctic temperature did not begin to rise hundreds of years before the concentration of atmospheric CO2, as has been suggested by earlier studies.

View Full Text

Related Content