Interferon-ε Protects the Female Reproductive Tract from Viral and Bacterial Infection

See allHide authors and affiliations

Science  01 Mar 2013:
Vol. 339, Issue 6123, pp. 1088-1092
DOI: 10.1126/science.1233321

You are currently viewing the abstract.

View Full Text

A Role for IFN-ɛ

Type I interferons (IFNs) are critical cytokines involved in host defense against pathogens, particularly viruses. IFN-ɛ is an IFN-like gene encoded within the type I IFN locus in mice and humans whose function has not been characterized. Fung et al. (p. 1088) created mice with a genetic deletion in Ifn-ɛ and found that, like other type I IFNs, IFN-ɛ signals through the IFN-α receptors 1 and 2. However, unlike these other cytokines, which are primarily expressed by immune cells and are induced upon immune cell triggering, IFN-ɛ was expressed exclusively by epithelial cells of the female reproductive tract in both mice and humans and its expression was hormonally regulated. IFN-ɛ–deficient mice were more susceptible to infection with herpes simplex virus 2 and Chlamydia muridarum, two common sexually transmitted pathogens.


The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-ε as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-ε was not induced by known PRR pathways; instead, IFN-ε was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-ε–deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-ε is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.

View Full Text