Report

DNA Gridiron Nanostructures Based on Four-Arm Junctions

Science  22 Mar 2013:
Vol. 339, Issue 6126, pp. 1412-1415
DOI: 10.1126/science.1232252

You are currently viewing the abstract.

View Full Text
As a service to the community, AAAS/Science has made this article free with registration.

Rewiring DNA Origami

Complex DNA nanostructures can be formed from a long scaffold strand of DNA by binding many shorter “staple” strands. In these DNA origami structures, the path of the scaffold has been restricted by a double-crossover motif to form parallel helices. Han et al. (p. 1412) now describe a more flexible approach based on a “gridiron unit” in which four four-arm junctions link together to form a two-layer square frame. A variety of two- and three-dimensional structures were created, including highly curved structures, such as a sphere and a screw.

Abstract

Engineering wireframe architectures and scaffolds of increasing complexity is one of the important challenges in nanotechnology. We present a design strategy to create gridiron-like DNA structures. A series of four-arm junctions are used as vertices within a network of double-helical DNA fragments. Deliberate distortion of the junctions from their most relaxed conformations ensures that a scaffold strand can traverse through individual vertices in multiple directions. DNA gridirons were assembled, ranging from two-dimensional arrays with reconfigurability to multilayer and three-dimensional structures and curved objects.

View Full Text