Report

Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance

Science  29 Mar 2013:
Vol. 339, Issue 6127, pp. 1608-1611
DOI: 10.1126/science.1230200

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Honeybees Can't Do It Alone

The majority of food crops require pollination to set fruit with the honeybee providing a pollination workhorse, with both feral and managed populations an integral component of crop management (see the Perspective by Tylianakis, published online 28 February). Garibaldi et al. (p. 1608, published online 28 February) now show that wild pollinators are also a vital part of our crop systems. In more than 40 important crops grown worldwide, wild pollinators improved pollination efficiency, increasing fruit set by twice that facilitated by honeybees. Burkle et al. (p. 1611, published online 28 February) took advantage of one of the most thorough and oldest data sets available on plant-pollinator interaction networks and recollected data on plant-pollinator interactions after more than 120 years of climate change and landscape alteration. The historical data set consists of observations collected by Charles Robertson near Carlinville, Illinois (USA), in the late 1800s on the phenology of plants and their pollinating insects, as well as information about which plants and pollinators interacted with one another. Many sites were revisited in the early 1970s and in 2009 and 2010 to collect similar plant-pollinator data. Pollinator function has declined through time, with bees showing lower visitation rates and lower fidelity to individual plant species.

Abstract

The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.

View Full Text

Related Content