Report

A Tissue-Like Printed Material

Science  05 Apr 2013:
Vol. 340, Issue 6128, pp. 48-52
DOI: 10.1126/science.1229495

You are currently viewing the abstract.

View Full Text

Via your Institution

Log in through your institution

Log in through your institution


Bio-Inspired Synthetic Network

Collective behavior comes through the ability of neighboring objects to communicate and interact with each other. Villar et al. (p. 48; see the cover) produced three-dimensionally patterned, interconnected networks of lipid-bounded structures functionalized with transmembrane proteins, which allowed electrical communication along specific pathways.

Abstract

Living cells communicate and cooperate to produce the emergent properties of tissues. Synthetic mimics of cells, such as liposomes, are typically incapable of cooperation and therefore cannot readily display sophisticated collective behavior. We printed tens of thousands of picoliter aqueous droplets that become joined by single lipid bilayers to form a cohesive material with cooperating compartments. Three-dimensional structures can be built with heterologous droplets in software-defined arrangements. The droplet networks can be functionalized with membrane proteins; for example, to allow rapid electrical communication along a specific path. The networks can also be programmed by osmolarity gradients to fold into otherwise unattainable designed structures. Printed droplet networks might be interfaced with tissues, used as tissue engineering substrates, or developed as mimics of living tissue.

View Full Text